8 research outputs found

    Advance Android PHAs/Malware Detection Techniques by Utilizing Signature Data, Behavioral Patterns and Machine Learning

    Get PDF
    During the last decade mobile phones and tablets evolved into smart devices with enormous computing power and storage capacity packed in a pocket size. People around the globe have quickly moved from laptops to smartphones for their daily computational needs. From web browsing, social networking, photography to critical bank payments and intellectual property every thing has got into smartphones; and undoubtedly Android has dominated the smartphone market. Android growth also attracted cyber criminals to focus on creating attacks and malwares to target Android users. Malwares in different category are seen in the Android ecosystem, including botnets, Ransomware, click Trojan, SMS frauds, banking Trojans. Due to huge amount of application being developed and distributed every day, Android needs malware analysis techniques that are different than any other operating system. This research focuses on defining a process of finding Android malware in a given large number of new applications. Research utilizes machine learning techniques in predicting possible malware and further provide assistance in reverse engineering of malware. Under this thesis an assistive Android malware analysis system “AndroSandX” is proposed, researched and developed. AndroSandX allows researcher to quickly analyze potential Android malware and help perform manual analysis. Key features of the system are strong assistive capabilities using machine learning, built in ticketing system, highly modular design, storage with non-relational databases, backup of analysis data for archival, assistance in manual analysis and threat intelligence. Research results shows that the system has a prediction accuracy of around 92%. Research has wide scope and lean towards providing industry oriented Android malware analysis assistive system/product

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Emergency Management System Using Android Application

    No full text
    Abstract- Communication during disaster time is very crucial for both rescue team and victim. Emergency never comes with prior intimation. The System is intended to function in case of emergencies in society. The emergencies include Fire, Medical Emergencies, accident and External Emergencies (Earthquake, Floods, Strom). In this paper we present Emergency Management System (EMS), which enables smart phone based ad-hoc communications at disaster times over Wi-Fi. The person in an emergency or anybody at the emergency site will call the EMS at avail service. Location Coordinates are sending on each request. The system works on the principles of client-Server system, wherein the server responds to the requests of the Clients. We have Implemente
    corecore